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[1] We develop a new, lattice effects-free lattice
Boltzmann model for simulating crystal growth from
supersaturated solution. Simulations of crystal growth
from a single or multiple nuclei in a domain initially
filled with supersaturated solution are presented, such as in
the case of gas hydrate formation. We find that as the
process changes from diffusion-controlled to surface
reaction-controlled, the crystal transforms from open
cluster-type structure, via compact coral-type structure, to
compact circular structure, and correspondingly, the fractal
dimension of the crystal structure increases from a value
close to that of a diffusion-limited aggregation (DLA)
structure to the Euclidian value for a circle. At a high
Damkohler number, crystal formed from a single nucleus
becomes more compact as the saturation increases. At a low
Damkohler number, the crystal has a fairly round shape for
different saturation values and the effect of saturation is
insignificant. INDEX TERMS: 1010 Geochemistry: Chemical

evolution; 3210 Mathematical Geophysics: Modeling; 3250

Mathematical Geophysics: Fractals and multifractals; 3620

Mineralogy and Petrology: Crystal chemistry.Citation: Kang, Q.,

D. Zhang, P. C. Lichtner, and I. N. Tsimpanogiannis (2004),

Lattice Boltzmann model for crystal growth from supersaturated

solution, Geophys. Res. Lett., 31, L21604, doi:10.1029/

2004GL021107.

1. Introduction

[2] The past decade has seen great advances in lattice gas
automata (LGA) and lattice Boltzmann (LB) methods as
powerful numerical tools for simulating complex fluid flows
and modeling physics in fluids. Unlike conventional
numerical schemes based on discretizations of macroscopic
continuum equations, the LGA and LBmethods are based on
microscopic models and mesoscopic kinetic equations. This
feature gives the LGA and LB methods the advantage of
studying non-equilibrium dynamics, especially in fluid flow
applications involving interfacial dynamics and complex
boundaries (geometries). Since their appearance, they have
been successfully applied to studying a variety of flow and
transport phenomena such as flow in porous media, turbu-
lence, multiphase and multicomponent flows, particles sus-
pended in fluids, and heat transfer and reaction-diffusion
[Chen and Doolen, 1998]. Compared to these applications,
there are relatively few studies using the LB method to study

crystal growth. Only recently two thermal LB methods with
enhanced collisions and coupled with phase-field method
have been adapted to the problem of liquid-solid phase
transition [de Fabritiis et al., 1998; Miller et al., 2001].
[3] In this letter, we develop a simple reaction model for

isothermal crystal growth from a supersaturated solution in
the context of the LB method with a Bhatnagar-Gross-
Krook (BGK) collision operator [Qian et al., 1992; Chen et
al., 1992]. The use of the lattice BGK model makes the
computations more efficient and allows the flexibility of
varying transport coefficients.
[4] This work is the first step towards the numerical study

of formation and decomposition of gas hydrates. Gas
hydrates are crystalline, non-stoichiometric, clathrate com-
pounds. They are formed by certain gases (such as methane,
ethane, and carbon dioxide) when contacted with water
under low temperature and high pressure. The physical
properties of these compounds give rise to numerous
applications in the broad areas of energy production and
storage and climate effects [Sloan, 2003]. The largest
challenge in hydrate research is to describe the kinetics of
hydrate formation and decomposition. It has been theoret-
ically demonstrated and experimentally observed that
hydrate formation is not restricted to a thin layer close to
the gas-liquid interface but can occur anywhere in the liquid
water phase if the solution is supersaturated [Tohidi et al.,
2001]. However, the formation mechanism is still not fully
understood, especially in porous media.
[5] Even though there is not a unified hydrate kinetics

model yet, it is important to perform a set of sensitivity
studies on the control parameters based on the existing
kinetics models. In this work, we numerically simulate
crystal growth from a supersaturated solution with the LB
model. We perform a set of parametric studies varying the
Damkohler number (a parameter that describes the effect of
reaction relative to that of diffusion) and saturation using a
first-order kinetic rate law and examine the effects of these
parameters on the patterns of crystal growth.

2. Lattice Boltzmann Method

[6] In the current study, we ignore the thermal effects and
assume that the solute concentration does not affect the
density and velocity of the solution. The solute transport in
such a system can be described by the following lattice
BGK equation:

gi xþ eidt; t þ dtð Þ ¼ gi x; tð Þ � gi x; tð Þ � g
eq
i C; uð Þ½ �=ts; ð1Þ

where gi is the distribution function of the solute
concentration, dt is the time increment, ts is the relaxation
time, C and u are the solute concentration and the fluid
velocity, respectively, e0is are the discrete velocities, and gi

eq
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is the corresponding equilibrium distribution function. In
the most commonly used two-dimensional, nine-speed
(D2Q9) model, e0is have the following form:

ei ¼
0 i ¼ 0;
cos i� 1ð Þp=2½ �; sin i� 1ð Þp=2½ �ð Þ i ¼ 1� 4;ffiffiffi
2

p
cos i� 5ð Þp=2þ p=4½ �; sin i� 5ð Þp=2þ p=4½ �ð Þ i ¼ 5� 8;

8<
: ð2Þ

ts is related to the diffusivity by D = (ts � 0.5)/3, and gi
eq

has the following form:

g
eq
i C; uð Þ ¼ wiC 1þ 3ei 
 uþ 4:5 ei 
 uð Þ2�1:5u2

h i
; ð3Þ

where w0
is are the associated weight coefficients, which are

w0 = 4/9, wi = 1/9 for i = 1, 2, 3, 4, and wi = 1/36 for i = 5, 6,
7, 8. The solute concentration is calculated using

C x; t þ dtð Þ ¼
X
i

gi x; t þ dtð Þ: ð4Þ

Using the Chapman-Enskog expansion technique, one can
prove that the above LB equation recovers the following
convection-diffusion equation [Dawson et al., 1993]:

@C=@t þ u 
 rð ÞC ¼ r 
 DrCð Þ: ð5Þ

[7] Since we have assumed that the solute concentration
does not affect the density and velocity of the fluid, we can
use the evolution equation of another distribution function
to describe the fluid flow. This equation has been shown to
recover the correct continuity and momentum equations at
the Navier-Stokes level [Qian et al., 1992; Chen et al.,
1992]. In previous studies of chemical dissolution and
precipitation in porous media, we have shown that the LB
method can provide detailed flow information in pore space
[Kang et al., 2002, 2003]. In this study, we will focus on
the effect of Damkohler number and supersaturation on the
crystal growth by ignoring the fluid flow, though the
method presented here is equally applicable to the situation
where flow is present.

3. Boundary Conditions

[8] For generality and simplicity, we consider the general
first-order kinetic-reaction model at the fluid-solid interface
[Lasaga, 1981]:

D@C=@n ¼ kr C � Csð Þ; ð6Þ

where D is the diffusivity, C is the solute concentration at
the interface, Cs is the saturation concentration, kr is the

local reaction-rate constant, and n is the direction normal to
the interface pointing toward the fluid phase. This reaction
model is very similar to a typical kinetic model for hydrate
formation proposed by Englezos et al. [1987] and by
Bishnoi and Natarajan [1996]. The driving force in their
model is the difference in the fugacity of the dissolved gas
and its fugacity at the three phase equilibrium while it is the
concentration difference (DC = C � Cs) in our study.
[9] The above formulation describes a boundary

condition for solute concentration. In previous studies we
have formulated a boundary condition for the distribution
function [Kang et al., 2002, 2003]. We have based our
approach on the observation that, at a stationary wall, the
non-equilibrium portion of the distribution function is
proportional to the dot product of the function’s microscopic
velocity and the concentration gradient. Figure 1 is a
schematic illustration of a wall node. After each streaming
process of the particle distribution function (gi), g0, g1, g3,
g4, g7, and g8 of node Q are known. In contrast, we must
determine g2, g5, and g6, using the boundary conditions. To
determine the solute concentration at this node, we use the
known distribution function g4:

C ¼ g4 þ bCsð Þ= w4 þ bð Þ; ð7Þ

where b = kr/(8D) [Kang et al., 2002, 2003]. On the basis of
C and u, we can calculate gi

eq from equation (3). From this
result we then can calculate the unknown distribution
functions: g2 = g2

eq + g4
eq � g4; g5 = g5

eq + g7
eq � g7; and g6 =

g6
eq + g8

eq � g8.
[10] We neglect the solute diffusion in the solid and

assume that crystal growth only occurs at liquid-solid
interface. Each node at the interface represents a control
volume with a size of 1 � 1 (in lattice units) and is located
at the center of this volume. As we can see from Figure 1,
node Q is the center of the control volume surrounded by
dashed lines. Initially, this control volume is given a mass
b0. We update the mass at every time step by b = b + Dxkr
(C � Cs)dt = b + kr(C � Cs), where Dx is the length of the
control volume along the interface and dt is the time
increment. Both of them equal unity in this case. For this
control volume, when b = 2b0, i.e., when the mass doubles,
one of the nearest (S) or diagonal liquid nodes (R and T)
becomes a solid particle with a probability of PS = 4PR =
4PT. The ratio of solidification probability between the
nearest node and diagonal nodes is 4:1, which equals the
ratio of weight coefficients between the vertical (e2) and
diagonal directions (e5 and e6). By doing so, we eliminate
the lattice grid effects.

4. Simulation Results and Discussions

[11] The simulation geometry is a two-dimensional cell
of size h � h, where h equals 200 (in lattice units) in this
study. Initially, the domain is filled with a supersaturated
solution with a concentration C0. At time zero, a stable
nucleus is introduced at the center of the domain. Crystal
begins to grow subsequently. Simple dimensional analysis
suggests that there are two important dimensionless param-
eters, which control the processes. They are the relative
concentration or saturation (y = C0

Cs
) and Damkohler number

(Da). The Da number is defined as krh
D

and describes the
effect of reaction relative to that of diffusion.

Figure 1. Schematic illustration of a wall node.
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[12] Figure 2 shows crystal structures at different Da
numbers and at 2000, 3000, and 4000 solid particles (crystal
mass). The solute saturation is 1.2. As we can see from (a),
the crystal is not compact. As the Da number decreases,
the process becomes more and more surface reaction-
controlled. Compared to the reaction, the mass transfer via
diffusion is now fast. The solute can be easily transported
from the bulk to the liquid-solid interface located at the
center area of the domain. Therefore, the crystal growth is
expected to be more compact, centered with the initial
nucleus. This result is consistent with that of the multipar-
ticle diffusion-limited aggregation (MPDLA) simulation of
solidification structures of alloy melt, in which the mor-
phology transforms from open cluster-type structures, via
compact coral-type structures, to compact facetted struc-
tures as the process changes from diffusion-controlled to
interface kinetics-controlled [Das and Mittemeijer, 2001]. In
addition, the crystal shape in case (d) is a fairly round shape
if we take into account the randomness introduced in the
growth. This indicates that our model is free of lattice grid
effects, which exist in other numerical simulations of crystal
growth [Das and Mittemeijer, 2001; Xiao et al., 1988]. In
their studies, the final crystal shape depends on the lattice
used in the numerical simulation, even for the case of
isotropic growth.
[13] Table 1 gives the approximate fractal dimension

values (Df) for the crystal structure at different Da numbers.
Calculations are based on 30 realizations and a maximum of
4000 crystal particles for each case. As can be seen, Df

decreases from about 2 (the Euclidian dimension of a circle)
to 1.75 (only 2.3% greater than 1.71, the fractal dimension

of a DLA structure [Feder, 1988]) as Da number increases
from 2 to 600. A more accurate estimate of Df needs more
realizations and particles and hence requires much longer
computational time.
[14] Figure 3 shows the dependence of the square of

radius of gyration of the crystal (normalized by the crystal
mass) on Da number at solute saturation 1.2 and 3000 solid
particles. The radius of gyration indicates the compactness
of the crystal [Feder, 1988]. It is clear that as the Da number
increases, the radius increases too, showing a decrease of
the compactness of the crystal structure. The radius has two
asymptotic values at a very small and a very large Da
number, respectively, and varies according to a power law at
Da number values in between. Results from different
realizations agree with each other very well at small Da
numbers, but deviate as the Da number becomes large. This
is so because the small Da number corresponds to a surface
reaction-controlled process and different realizations result
in almost the same compact round-shape structure. For a
large Da number, however, different realizations may result
in very different but statistically similar structures.
[15] Figure 4 shows the dependence of the square of the

radius of gyration of the crystal at equilibrium state and at

Figure 2. Crystal structures developed at different Da
numbers and at solute saturation 1.2: (a) Da = 600; (b) Da =
150; (c) Da = 48; (d) Da = 2.

Table 1. Fractal Dimension Values

Da 2 48 96 150 600

Df 2.002 ± 0.001 1.95 ± 0.01 1.80 ± 0.02 1.77 ± 0.02 1.75 ± 0.02

Figure 3. The square of radius of gyration of the crystal
(normalized by the crystal mass) at different Da numbers
and at solute saturation 1.2. Different symbols indicate
different realizations.

Figure 4. The square of radius of gyration of the crystal
(normalized by crystal mass) at different saturation and Da
numbers. Different symbols indicate different realizations.
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different Da numbers on the initial saturation. It is clear that
at a large Da number, the radius decreases as the saturation
increases. This is so because there is only one initial nucleus
in the system and growth can only occur at the liquid-solid
interface. Therefore, a high degree of supersaturation makes
it easier for the solute to transport to the interface and hence
the process is more like a reaction-controlled one. The effect
of saturation becomes insignificant at a very small Da
number because the process is already reaction-controlled.
Since this observation is relative to each single nucleus, it
may be different from experimental observations. Because
in the hydrate-formation experiments, the supersaturation
may cause the formation of multiple nuclei in the system,
hydrate may grow from each individual of these nuclei,
resulting in incompact overall hydrate structures.
[16] To demonstrate this, we have performed a set of

simulations of crystal growth from multiple initial nuclei.
Since the mechanism of hydrate nucleation is still not
understood and needs to be experimentally studied [Bishnoi
and Natarajan, 1996], we assume that the initial stable
nuclei are uniformly distributed in the domain. Figure 5
shows the dependence of the square of the radius of
gyration (normalized by the total mass of the crystal
clusters) on the number of initial nuclei at saturation 1.2
and 1.3. As can be seen, although the radius for the single
nucleus at y = 1.2 is greater than its counterpart at y = 1.3,
it is smaller than those for multiple nuclei at y = 1.3. Since
it is likely that the higher saturation may cause the forma-
tion of more initial nuclei in the system, the final crystal
clusters of the system with higher saturation may be less
compact than those of the system with lower initial satura-
tion. For both saturations, the radius increases with the
number of initial nuclei at first, and then decreases as the
number becomes so large that interaction between clusters
from different nuclei tends to make the clusters in the
system more compact.

5. Conclusions

[17] We have developed a new, lattice effects-free lattice
Boltzmann model for simulating crystal growth from
supersaturated solution and applied it to the simulations of

crystal growth from a single or multiple nuclei in a domain
initially filled with supersaturated solution. We found
that as the process changes from diffusion-controlled to
surface reaction-controlled, the crystal transforms from
open cluster-type structure, via compact coral-type struc-
ture, to compact circular structure, and correspondingly, the
fractal dimension of the crystal structure increases from a
value close to that of a diffusion-limited aggregation (DLA)
structure to the Euclidian value for a circle. At a high
Damkohler number, crystal formed from a single nucleus
becomes more compact as the saturation increases. At a low
Damkohler number, the crystal has a fairly round shape for
different saturation values and the effect of saturation is
insignificant.
[18] As pointed out above, even though there is no flow

in these simulations, the method presented here is equally
applicable to crystal growth scenarios where flow exists.
Simulation results of crystal growth with fluid flow will be
presented in another publication. Finally, we would like to
point out that the crystal growth is a moving-boundary
problem, even for the pure diffusion case presented here. By
implementing the kinetic-reaction model into the boundary
conditions of the LB model and by tracking the mass
accumulation in each control volume at the interface, this
method takes full advantage of the kinetic nature inherent in
the LB method and avoids solving a moving-boundary
problem [Bekri et al., 1997], or using a phase-field method
to define the solid and liquid fraction [Miller et al., 2001]. It
also differs from the Monte Carlo method where an attempt
for an atom to deposit at the interface or return back to the
liquid is implemented by comparing the solidification and
melting probabilities with two random numbers [Das and
Mittemeijer, 2001]. The randomness in our method only
exists in the solidification step where it is necessary to
determine in which direction the solid particles will grow.
However, whether this randomness reflects the reality is a
subject of more careful studies. Also the new findings like
the effect of saturation need to be verified from experimen-
tal studies of formation kinetics of hydrate.
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