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We investigate fluid-structure interaction using lattice Boltzmann method (LBM), where we introduce a
new simple treatment for moving boundary. Sub-grids are defined to separate structures from main-grid,
thus structures can be created and calculated independently. Mapping and interpolation are used to con-
nect main-grid and sub-grids. Our proposed simulation approach demonstrates high reliability and sta-
bility when compared to the direct bounce back method available in the literature. We validate the
proposed approach by simulations of a single vibration cylinder in still water and in flowing water.
The results show good agreement with theory and reference experiments. We find a delay of fluid force
in the simulation of compact cylinder array, and conclude that Mach number (Ma) and boundary force
term have a great influence on the accuracy of calculation results. Ma should be carefully chosen for a
reliable result. Compressible effect in LBM and its influence on calculation of fluid-structure interaction,
which has not been studied in detail, are also discussed in this paper. It is hard to avoid time delay effect
under the framework of LBM according to the analysis, and this may lead to inaccurate results in fluid-
structure interaction calculation using LBM under certain conditions, which deserve more attention. This
paper investigates the vibration of structure in fluid using LBM, which will support the research for fluid
induced vibration.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Lattice Boltzmann method (LBM) has been developed into a
promising numerical method for simulating complex flow problem
due to its simplicity and efficiency. LBM, a method originated from
Lattice Gas Cellular Automata (LGA) method (Frisch et al., 1986), is
used to solve the macroscopic fluid dynamics based on a fully dis-
crete Boltzmann kinetic equation at mesoscopic scale (Aidun and
Clausen, 2010; Dawson et al., 1993; Chen and Doolen, 2012). The
equation allows obtaining the pressure field and the stress tensor
locally without solving any Poisson problem, which makes LBM
very suitable for parallel computing. The method has been widely
developed in fluid flow at a microscale, porous media, multiphase
flow and many other fluid fields. As the study progressed, many
problems arise in a larger scope of application, such as numerical
instability problems (Ansumali and Karlin, 2000; Lallemand and
Luo, 2000) especially at high Reynolds number flows. This disad-
vantage can be overcame using multiple-relaxation time (MRT)
model (Luo et al., 2011; D’Humières, 2002; Lallemand and Luo,
2003). The relaxation parameters of MRT are represented by differ-
ent physical quantities, such as fluid density, kinetic energy,
momentum, energy flux and viscous stress tensor. These physical
quantities can be relaxed to their respective equilibrium states
by different relaxation times, which improve the flexibility of the
algorithm. MRT can not only effectively eliminate fluctuations in
velocity and pressure, but also greatly improve the numerical
stability and accuracy of simulation. Due to the limitation of
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Fig. 1. Boundary conditions for a rigid wall intersect with link.
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calculation condition, the maximum allowed Reynolds number of
single-relaxation time (SRT) is about 104 (Martínez et al., 1994).

Fluid-structure interaction is one of the most concerned fluid
mechanics problems for computational fluid dynamic. Many
researches have been devoted to these problems using LBM for
the past two decades (Ladd, 1993; Filippova and Hänel, 1998;
Mei et al., 1999; Bouzidi et al., 2001; Lallemand and Luo, 2003;
Guo et al., 2002; AIAA, 2003; Hu et al., 2017; Peng et al., 2016;
Ginzburg and D’Humières, 2003; Li et al., 2004; Mei et al., 2006;
Caiazzo, 2013; Chen et al., 2014; Chen et al., 2013; Wu and Shu,
2009; Inamuro, 2012; De Rosis et al., 2014; De Rosis et al., 2014;
Li et al., 2016; Wang et al., 2016; Delouei et al., 2016). The main
challenge in the simulation of fluid-structure interaction using
LBM is the treatment of moving boundary according to the transfer
of distribution functions. Bounce Back (BB) method with moment
correction was first proposed by Ladd (Ladd, 1993). This method
has also been extended and improved to treat curved boundaries
by many researches (Filippova and Hänel, 1998; Mei et al., 1999;
Bouzidi et al., 2001; Lallemand and Luo, 2003; Guo et al., 2002;
AIAA, 2003; Hu et al., 2017). Practical ways was provided to deal
with moving boundary, but higher frequency fluctuations may be
caused due to the movement of grid points in and out the region
inside the solid structure. LBM combined with the immersed
boundary method (IBM) (Wu and Shu, 2009; Inamuro, 2012; De
Rosis et al., 2014; De Rosis et al., 2014; Li et al., 2016; Wang
et al., 2016; Delouei et al., 2016) is widely used in most recent
researches as it is based on the Cartesian grid which is suited for
LBM. Although a lot of researches have been done regarding this
topic and a number of cases have been confirmed, the reliability
of LBM with moving boundary for complex situations, such as
fluid-structure interaction cases involved close packed structures,
needs further investigation.

This paper provides a new moving boundary method based on
BB method (Mei et al., 1999), which is free from the problem of
high frequency fluctuations. Cylinder vibration in still water and
in flow water are simulated and the results are compared with the-
ory and reference experiments. The compressible effect in fluid-
structure interaction of Multi-structure using LBM is also
discussed.

2. Lattice Boltzmann method

Instead of solving the Navier–Stokes (NS) equations directly,
LBM is a mesoscopic method derived from the Boltzmann kinetic
equation in a mesoscopic scale. The evolution equation (Chen
and Doolen, 2012) is

f ðxi þ cdt; tn þ dtÞj i � f ðxi; tnÞj i ¼ Xðxi; tnÞj i ð1Þ
where f ðxi; tnÞj i is the column vector of distribution function at posi-
tion xi and time tn and f ðxi; tnÞj i 2 V � RQ , dt is the time step, c is the
discrete velocity given by {(0, 0), (1, 0), (0, 1), (�1, 0), (0, �1), (1, 1),
(�1, 1), (�1, �1), (1,�1)} for a D2Q9 model. Xðxi; tnÞj i is the discrete
collision operator. We employ MRT model (Luo et al., 2011;
D’Humières, 2002; Lallemand and Luo, 2003) to the function, in
which the collision operator is:

Xðx; tÞj i ¼ �M�1 � Ŝ � ½ mj i � meqj i� ð2Þ
mj i is the vector of moment can be denoted as:

mj i ¼ ðq; e; e; jx; qx; jy; qy; pxx;pxyÞT ð3Þ
where q is the mass density, and jx = qux and jy = quy are x and y
components of the flow momentum, respectively, which are the
conserved moments in the system. Other moments are non-
conserved moments and their equilibria are functions of the con-
served moments in the system. For the vector of moment given
above, the corresponding diagonal relaxation matrix of relaxation

rates Ŝ is

Ŝ ¼ diagðsq; se; se; sv; sq; sv; sq; sm; smÞ ð4Þ
3. Moving boundary condition

3.1. Conventional bounce back method

Moving boundary treatment is the core of fluid-structure inter-
action using LBM. Many researches have been performed for the
treatment of curved boundary and moving boundary (Filippova
and Hänel, 1998; Mei et al., 1999; Bouzidi et al., 2001; Lallemand
and Luo, 2003; Guo et al., 2002; AIAA, 2003; Hu et al., 2017; Wu
and Shu, 2009; Inamuro, 2012; De Rosis et al., 2014; De Rosis
et al., 2014; Li et al., 2016; Wang et al., 2016; Delouei et al., 2016).

This paper mainly introduces a new improvement boundary
treatment based on BB method. BB method considered a boundary
lying between the solid and the fluid nodes denoted, respectively,
by xs and xf as shown in Fig. 1. The physical boundary intersects the
fluid-solid link between xs and xf at the point xb. ci and c-i stand for
directions opposite to each other, which are defined as ci = xb � xf
and c�i = �ci, respectively. The lattice spacing isDx = 1. The fraction
of the intersected link in the fluid region is q, that is,

q ¼ jxf � xbj
jxf � xsj ¼

jxf � xbj
Dx

with 0 < q 6 1 ð5Þ

After the collision step f iðxf ; tn þ dtÞ is known after streaming

from xf’ as ~f iðxf 0; tnÞ. Where f and ~f denote pre- and post-collision
state of distribution function. f�iðxf ; tn þ dtÞ is unknown and should

be streamed from xs as ~f�iðxs; tnÞ which is to be computed by fol-
lowing linear interpolation (Filippova and Hänel, 1998):

~f�iðxs; tnÞ ¼ ð1� vÞ~f iðxF; tnÞ þ vf �i ðxs; tnÞ ð6Þ

where wi is the weight factor corresponding to the i direction and
uw is the boundary velocity.

f �i ðxs; tÞ is fiction distribution function and can be defined as:

f �i ðxs; tÞ ¼ wiqðxFÞ 1þ 3
c2

ðci � uSFÞ þ 9
2
ðci � uSFÞ2

c4
� 3
2
u2
F

c2

" #
ð7Þ

The value of uSF and weighting factor v can be obtained (Mei
et al., 1999):

uSF ¼ uSF ¼ uF0; v ¼ x � ð2q� 1Þ=ð1� 2xÞ; q < 0:5
uSF ¼ ð1� 3=2qÞ � uF þ 3=2q � uw; v ¼ 2x � ð2q� 1Þ=ð2þxÞ; q P 0:5

�

ð8Þ

in which x is the relaxation factor.
For a moving wall treatment using the BB scheme, a force term

must be added to the bounced distribution function to reflect the
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fluid structure interaction at the boundary surfaces. The distribu-
tion function should be formulated in the form as:

f�iðrsÞ ¼ f iðrsÞ þ 6wi
q
c2

ðc�i � uwÞ ð9Þ
Fig. 3. Coordinate system of main-gird and sub-grid.
3.2. New boundary treatment

The moving boundary method above may directly cause higher
frequency fluctuations especially for fluid flow with curved bound-
ary. This is caused by the moving in and out of grids which will
change the boundary nodes numbers and the bounce back distri-
bution functions all the time. To avoid this situation, a new treat-
ment of moving boundary based on BB method is proposed in
this paper. New moving boundaries are achieved by defining some
extra floating grids (sub-grid) upon ordinary lattice (Main-grid).
This method can be called Floating Grid method (FG) as sub-
grids are floating upon main-grid.

3.3. Definition of sub-grid

Sub-grid is defined as shown in Fig. 2. Every sub-grid corre-
sponds to a single structure. The size of sub-grid should be large
enough to cover the structure. The definition of boundary nodes
and solid nodes in sub-grid is the same as conventional BB method.
Fluid nodes in the periphery of sub-grid need no operation. A local
coordinate is defined for sub-grid corresponding to the movement
of structure.

3.4. Coordinate transformation

Coordinate transformation is needed for the information
exchange between sub-grid and main-grid. Here we define the
local coordinate system of sub-grid as Csub and the global coordi-
nate system of main-grid as Cmain Fig. 3)Csub is a moving coordinate
system and can be obtained as:

CsubðtÞ ¼ sbðtÞ ð10Þ

where sb(t) is the displacement of boundary.
Cmain is a stationary coordinate system. Coordinate transforma-

tion between sub-grid and main-grid is as follow:

Xsub þ Csub ¼ Xmain þ Cmain ð11Þ

where Xsub and Xmain are the coordinates of same location in sub-
grid and main-grid respectively.
Fig. 2. Definition of sub-grid.
3.5. Information exchange between sub-grid and main-grid

As the nodes of sub-grid don’t coincide with the nodes of main-
grid, fiction nodes Fig. 4) are created to stream distribution func-
tion from main-grid to sub-grid. Supposing the coordinate of
sub-grid’s boundary node is Xboundary, the coordinate of fiction node
can be obtained according to equation:

Xficiton ¼ Xboundary þ c�i þ Csub � Cmain ð12Þ

The distribution functions of fiction node in i direction are inter-
polated by neighboring four main-grid nodes Fig. 4:

f iðxficÞ ¼ f iðx1Þ � ð1� sÞð1� tÞ þ f iðx2Þ � sð1� tÞ þ f iðx3Þ � ð1� sÞt
þ f iðx4Þ � s � t ð13Þ

where s, t are x, y deviation values of fiction node relative to node 1
Fig. 4. Then f iðxbÞ can be streamed from f iðxficÞ:

f iðxb; tn þ dtÞ ¼ f iðxfic; tnÞ ð14Þ
Fig. 4. Streaming from main-grid to sub-grid.
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The value of sub-grid node is transported to main-grid node by
mapping method. There are two main purposes for mapping oper-
ations. One is mapping the node states of sub-grid to main-grid
nodes, the other is mapping the value of sub-grid nodes to the
main-grid nodes.

Three types of node states are defined. Logical matrix B, S, F are
defined for boundary nodes state, solid node state and fluid node
state respectively, where � F ¼ ðB _ SÞ. The node states of sub-
grid are mapped to main-grid by preforming logical operations
on neighboring four sub-grid nodes Fig. 5):

Boundary node: BMain
j ¼� FSub

k ^ FSub
kþ1 ^ FSub

kþ2 ^ FSub
kþ3

� �
^

� SSubk ^ SSubkþ1 ^ SSubkþ2 ^ SSubkþ3

� �
Solid node: SMain

j ¼ SSubk ^ SSubkþ1 ^ SSubkþ2 ^ SSubkþ3
Fluid node : FMain
j ¼� ðBMain

j ^ SMain
j Þ ð15Þ

It can be inferred from Fig. 6 that the main-grid nodes nearest to
the boundary are set as boundary nodes by Eq. (15). Some bound-
ary nodes may locate inside the boundary. This is a little different
from the conventional BB method.
Fig. 5. Mapping

Fig. 6. Mapping sub-grid node
The distribution functions of main-grid boundary node need
to be determined by surround sub-grid boundary nodes. The
distribution function of main-grid boundary node can be obtained
by:

f Main B
i ¼ f interpi þ

X
dðrÞ � f ex Sub

i ð16Þ

where f interpi is interpolated by surrounding four sub-grid nodes
without using Eq. (9):

f iðxjÞ ¼ f iðxkÞ � ð1� sÞð1� tÞ þ f iðxkþ1Þ � sð1� tÞ þ f iðxkþ2Þ � ð1� sÞt
þ f iðxkþ3Þ � s � t ð17Þ

where s, t are x, y deviation values of node j relating to node k Fig. 5.
Equilibrium distribution functions computed according to the

boundary velocity are used for solid nodes. f ex Sub
i is the force term

in Eq. (9). dðrÞ is a smoothed four-point delta function (Yang et al.,
2009) as below:
criterion.

states to main-grid nodes.
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dðrÞ ¼

3
8 þ p

32 � r2
4 ; jrj 6 0:5

1
4 þ 1�jrj

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2þ 8jrj � 4r2
p � 1

8 arcsinð
ffiffiffi
2

p
ðjrj � 1Þ; 0:5 6 jrj 6 1:5

17
16 � p

64 � 3jrj
8 þ r2

8 þ jrj�2
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�14þ 16jrj � 4r2

p
þ 1

16 arcsinð
ffiffiffi
2

p
ðjrj � 2ÞÞ; 1:5 6 jrj 6 2:5

0 jrj P 2:5

8>>>>>>><
>>>>>>>:

ð18Þ

where r is the distance between the main-grid boundary node and
the sub-grid boundary nodes. Thus the boundary forces are dis-
tributed smoothly to the main-grid boundary nodes around and
the fluctuation can be decreased by this method.
Fig. 7. A cylinder vibration in still water.

Table 1
Simulations in different grid number.

Case Lattice number in diameter Cm (BB-method) Cm (FG-method)

A 30 1.2875 1.035
B 60 1.2455 1.004
C 120 1.235 0.995

Fig. 8. Comparison of Cm using different me
The implementation process of this method is as follows:

(a) Collision step for main-grid and sub-grids;
(b) Streaming step for main-grid, where only fluid nodes need to

be streamed;
(c) Stream from main-grid to sub-grids. Fiction nodes are cre-

ated by interpolation. Only boundary nodes in sub-grids
need to be streamed.

(d) Compute the displacement and velocity of structures and
update the coordinates of sub-grids;

(e) Map sub-grids to main-grid.

Hydrodynamic evaluation is another important issue for fluid
structure interaction. Momentum exchange method is a conve-
nient and stable way for force evaluation and different Momentum
exchange methods have been detailed researched by former
researches (Tao et al., 2016), Wen’s method (Wen et al., 2014) is
adopted in this paper.
4. Simulation

4.1. Single cylinder vibration in still water

Firstly, we conduct a simulation about the moving boundary to
compare the conventional BB method and FG method raised in this
paper. The geometry of boundary conditions is shown in Fig. 7. The
domain fluid field is 0.2 m ⁄ 0.2 m. The left and right boundaries
are set as no-slip wall with half bounce method, and the top and
bottom boundaries are defined as open outlets with characteristic
nonreflecting boundary conditions (Izquierdo and Fueyo, 2008).
Cylinder in the center of the domain fluid field vibrates sinu-
soidally in y direction with y(t) = Asin(2pft), and the diameter of
cylinder is D = 0.03 m. Here, A is set as 0.1D, and f is equal to
5 Hz. The fluid is water with l = 0.001 Pa�s and q = 1000 kg/m3.
Mach number Ma = Vmax/cs is selected as 0.01 in this simulation.
The non-dimensional force coefficient Cm can be calculated by
Ffluid/(4Af2qp3D2/4), in which Ffluid is the fluid force of cylinder.
Simulations with different grid numbers are shown in Table 1,
the result of case C is used for analysis.

Comparison results of Cm with two boundary methods are
shown in Table 1 and Fig. 7. Cm from BB method is about 1.24 time
of that with FG method. As theoretical value of Cm = 1 (Chen, 1987)
for small amplitude vibration, BB method’s result is overestimated.
This may cause the overestimation of force when q deviates 0.5
thod. (a) Over all view, (b) Local view.
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using Eq. (9). As FG method uses Eq. (10) to spread force term, the
average operation in some extent reduces the force term, and this
is where the difference comes from. Pierre Lallemand and Li-Shi
Luo (Lallemand and Luo, 2003) revised the force term for q > 0.5
with dividing force term by q(2q + 1). Result of Lallemand’s method
can be seen in Fig. 8, which is close to the result of FG. Result of CFX
software is also presented in Fig. 8, and shows a good agreement
with FG. It is verified the result of FG. The configuration of CFX is
refer to (Hassan et al., 2009).

As can be seen in Fig. 8 (b), FG method shows smooth results,
while the results from BB method have a lot of fluctuations. It
can be concluded that FG method has a better stability than BB
method.
Fig. 9. Free vibration of a cylinder in still water.

Table 2
Simulations in different grid number.

Case Lattice number in diameter Y/D

A 30 0.098
B 60 0.0965
C 120 0.0959

Fig. 10. Decay of free vibration. (a
4.2. Free decay vibration of a cylinder in still water

The boundary of model is shown in Fig. 9. The size of domain is
0.2 m ⁄ 0.2 m. The viscosity and density of fluid are l = 0.001 Pa�s
and q = 1000 kg/m3. Here we set stiffness and the mass of cylinder
as k = 1184.38 N/m and m = 1.2 kg, respectively, which gives a nat-
ural frequency of 5 Hz in vacuum. An initial velocity of u = 0.1 m/s
is given to the cylinder in y direction which makes it freely vibrate
in fluid.

Simulation results of different gird size are compared in Table 2.
As the calculation is unstable at the very beginning of simulation,
Y/D at second peak is used for comparison, where Y is the displace-
ment of cylinder in y direction. Result of case C is used for analysis.

For cylinder freely vibrate in still water, it suffers the inertial
force and viscous force of fluid, and the motion of cylinder will
decay in time. Natural frequency of cylinder is reduced due to
the added mass of heavy fluid. The theory ratio of natural fre-
quency in water to natural frequency in vacuum can be calculated

as f water=f vacum ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m
mþqpD2=4

q
¼ 0:8 (Chen and Chung, 1976).

Significant amplitude decay and decrease in frequency can be
seen in Fig. 10. The results of CFX method are presented for com-
parison. The results match well between FG method and CFX
method. A frequencies ratio of 0.794 and 0.788 can be obtained
from FG and CFX method respectively, which is consistent with
the theory value of 0.8.

4.3. Vortex induced oscillation of a cylinder

Vortex induced oscillation of a cylinder is a classic problem of
fluid-structure interaction with plenty of numerical and experi-
mental studies (Anagnostopoulos and Bearman, 1992; Mittal and
Tezduyar, 2010; Takashi et al., 1992; Takashi, 1994; Blevins and
Saunders, 1977; Dettmer and Perić, 2006; Roshko, 1954). The
experiment of (Anagnostopoulos and Bearman, 1992) is used to
verify the simulation in this paper. The geometry and the boundary
conditions employed in the simulation are displayed in Fig. 11. The
parameters of this simulation refer to (Dettmer and Perić, 2006).
The spring is linear with the stiffness k = 5.79 N/m and damping
factor c = 0.325 g/s. The mass and the diameter of the cylinder
are given as m = 2.979 g and D = 0.16 cm, respectively. Thus, the
natural frequency of the cylinder follows as fn = 7.016 Hz. The fluid
under consideration is water with l = 0.01 g/(cm s) and q = 1.0 g/cm3.
The Reynolds number Re = qDu/l varies between 90 and 140. The
) Time history, (b) Spectrum.



Fig. 11. Geometry ([cm]) and boundary conditions.

Fig. 13. Amplitude comparison between simulation and experiment.
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Mach number is Ma = Vinlet/cs = 0.02. Both stationary cylinder sim-
ulaiton(short as SCS) and moving cylinder simulation(short as
MCS) are conducted in this paper.

Grid sizes of 1250 	 875, 2500 	 1750, 3750 	 2625 are used to
discuss grid independency of the model, which gives lattice num-
ber of 50,100,150 in diameter respectively. Lift force coefficients
(Cf) at Re = 140 are compared for SCS, and Y/Ds. at Re = 102 (lock-
in region) are compared for MCS. It can be seen in Table 3. Three
grid sizes are all capable for simulation. The model of case A are
used for simulation for time saving.

The comparison of SCS, MCS and experiment results is shown in
Fig. 12. fv is shedding frequency and fn is natural frequency of cylin-
der. The results are almost completely coincident with the curve
proposed by Roshko (Roshko, 1954) which indicates high reliability
of SCS with FG method in this paper. In addition, the results of MCS
clearly show a lock-in region, which is explained as follows. fv/fn of
Table 3
Simulations in different grid number.

Case Lattice number in diameter Cf for SCS Y/D for MSC

A 50 0.280 0.356
B 100 0.278 0.353
C 150 0.277 0.353

Fig. 12. Shedding frequency comparison between simulations and experiment.
MCS is coincident with that of SCS at Re < 98, and jumps to 1 at
Re = 98, then stays the same until about Re = 108, after which the
ratio is again coincident with that of SCS. These points of MCS
and the trend are also compared with the experiment
(Anagnostopoulos and Bearman, 1992) and both show good
agreement with the experiment.

Amplitude comparison between simulation and experiment is
shown in Fig. 13. It is obvious that simulation result has the same
trend with the experimental measurement while the values have
some deviations. The maximum amplitudes by simulation is 21%
Fig. 14. Evolution of vortex at Re = 104, (a) t/T = 7 (b) t/T = 28.
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larger than the experimental values and the start of lock-in region
is a little earlier than that of experiment. This may due to some sig-
nificant differences between the numerical and experimental mod-
els. In the experiment, the submerged length of the cylinder and
the depth of the water channel are 12 cm and 70 cm, respectively.
Fig. 15. Evolution of the amplitudes of the cylinder oscillation at different Re.
The flow involves a free surface on the tip of cylinder, which may
cause aggressive results.

Evolution of the lock-in effect is displayed in Figs. 14 and 15.
Shedding frequency synchronizes to natural frequency of cylinder
when they are close Fig. 14. Beat vibration can be seen before
(a) Re = 90, (b) Re = 96, (c) Re = 98, (d) Re = 102, (e) Re = 120, (f) Re = 130.



Fig. 16. Geometry and boundary conditions of cylinder array.

Table 4
Simulations in different grid number.

Case Lattice number in diameter Cm

A 30 1.270
B 60 1.246
C 120 1.241

Fig. 17. Cm of C1, C2 due to motion of C1 as a function of time,
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and after the lock-in region Fig. 15(b, f)). As the lock-in region
comes to an end, oscillation starts with a sudden jump Fig. 15(e)).
As the Reynolds number increases, the amplitude of the
oscillations smoothly decreases to a much gentle state Fig. 15(f)).
In general, the simulation results of this paper are convincingly
compared with the former experiment.
4.4. A cylinder vibration in cylinder array in still water and discussion
of compressible effect

Tube vibration in a tube array is a typical application of multi-
structure interaction. This has been intensively studied by many
researchers, including experimental and theoretical (Chen, 1987;
Chen and Chung, 1976; Tanaka et al., 2002). Cylinder and cylinders
around it are subjected to inertial force due to its own vibration.
The geometry of simulation is displayed in Fig. 16. A 5 	 5 cylinder
array is built, with a pitch of S = 0.04 m and a diameter of
D = 0.03 m, and the full size of fluid domain is 0.2 m 	 0.2 m with
wall around it. The fluid under consideration is water with
q = 1000 kg/m3 and l = 10�3 Pa s. The center cylinder oscillates
sinusoidally in y direction with y(t) = Asin(2pft). We set
A = 0.1D = 0.003 m in simulation. Three grid dimensions are
adopted for grid independency analysis. They are dimensions of
401 	 401, 801 	 801 and 1601 	 1601, which are usedto ensure
that at least 30, 60, 120 nodes are covered in a length of D respec-
tively. The non-dimensional force coefficient can be expressed as
Cm = Ffluid/(Ax2qpD2/4). Cm of center tube at Ma = 0.01 for different
grids are shown in Table 4 Here case B is used for simulation
considering accuracy and time saving.

Different Mach number Ma = 0.05, 0.01, 0.005, 0.0025 are
chosen to take compressible effect of LBM into consideration.
(a) Ma = 0.05, (b) Ma = 0.01, (c) Ma = 0.005, (d) Ma = 0.0025.



282 W. Tan et al. / Chemical Engineering Science 184 (2018) 273–284
Theoretically speaking, the fluid forces of C1, C2, C3 are in phase
with the motion of C1, and C2 is identical to C3 due to symmetry.
Thus, only forces of C1 and C2 are analyzed.

4.4.1. Phase lag analysis
The time history of Cm of C1 and C2 induced by the motion of C1

with differentMa are shown in Fig. 17. Distinguished from theoret-
ical results, a phase lag arises between the fluid forces of C1, C2 and
the motion of C1, which means the effect of C10s motion on C1 and
C2 is delayed in time. Phase lag decreases with the decrease of Ma.

4.4.2. Amplitude analysis
Cm of C1 and Cm of C2 at different Ma are compared with the

experiment of Tanaka (Tanaka et al., 2002). According to Table 5,
with the decrease of Ma, prediction of fluid forces coefficient
changes from underestimation to overestimation compared with
experment result.

4.4.3. Discussion of the results
As can be seen in Fig. 17 and Table 5, with the decrease of Ma,

the phase lag decreases and the Cm increases. Reasonable results
can be obtained only for Ma around 0.01 in this case. Fluid forces
increase with the decrease of Ma, which is caused by the strong
transient effect of cylinder vibration and the compressible effect
of LBM.

Fig. 18 shows a simplified illustration of LBM transportation in
time. Particle 1 is supposed to have a velocity U at time t, and it will
influence particle 3 after a moment of 2Dt by streaming and colli-
sion step, while the changing from state of Fig. 18(a) to state of
Fig. 18(c) is almost instantaneous for real incompressible flow. This
time lag is inevitable under the scheme of LBM. In steady state or
Fig. 18. Transport of particle in one dimention.

Table 5
Comparison of Cm between experiment and simulation.

Mach number Cm of C1 (error) Cm of C2(error)

Experiment Tanaka et al. (2002) 1.28 0.33
0.05 0.814(�36.4%) 0.149(�55.0%)
0.01 1.246(�2.7%) 0.316(�4.2%)
0.005 1.332(4.1%) 0.365(10.5%)
0.0025 1.421(11.0%) 0.428(29.7%)
weak transient state analysis, the time cost for state change is
much larger than Dt, thus they are not sensitive to Dt. Due to
the reasons above, there will be enough time for steady state and
weak transient state to iterate to an expected state. But for strong
transient cases, things will be different. One choice of remedy for
strong transient analysis is to reduceDt, which also means to
reduce Ma in LBM simulation.

Cylinder vibration in water is a strong transient case and the
velocity of boundary and fluid surround changes dramatically from
time to time. The vectors of velocity around oscillation cylinder for
Ma = 0.05 and Ma = 0.0025 at different times are demonstrated in
Fig. 19. Dt for Ma = 0.05 is about 20 times that of Ma = 0.0025.
For cylinder moves in real incompressible fluid, flow pattern can
be described as follow:

(a) Cylinder starts to move from static, and flow circulation
around cylinder is formed instantly.

(b) Cylinder moves in acceleration and flow circulation also
accelerates.

(c) Cylinder moves in deceleration and flow circulation also
decelerates.

(d) Cylinder stops moving and flow settles down.

Results ofMa = 0.0025 Fig. 19(b, d, f, h)) show a good agreement
of this pattern, corresponding to the small phase lag of C1. As a
comparsion, the motion of cylinder is much faster than the
distribution of flow at a Ma = 0.05 Fig. 19(a, c, e, g)), which is
corresponding to the rather large phase lag of C1.

Similar situation can be applied to adjacent cylinders, and the
time delay effect for adjacent cylinders is severer. The flow result-
ing from the moving cylinder just reaches adjacent cylinder at
t = 0.001 s and Ma = 0.0025 Fig. 19(b)), and a fully developed circu-
lation is formed later at about 0.007 s, which corresponds to the
phase lag of C2 in Fig. 17(d).

Although small Ma orDt can reduce the time delay caused by
transfer sheme of LBM, smallDt aggravates the fluid force
Table 5due to the use of Eq. (9) with the reduce of Ma. Besides,
the influence of force term in Eq. (9) increases with the decrease
of Ma. Considering the extreme caseDt approaching to 0, the pre-
sent of force term can be taken as an inlet boundary, while this
is incorrect in fact. A balance between compressible effect of
LBM and moving boundary is needed to be considered and differ-
ent Ma should be chosen for different cases. For example, only a
relatively reasonable result can be obtained in above case at
Ma = 0.005–0.01.

According to the analysis above, fluid-structure interaction
using LBM in some situations may not be accurated due to the
compressible effect of LBM and moving boundary using Eq. (9).
This needs attentions espacially for cases involving multi-
structure interaction.
5. Conclusion

Fluid-structure interaction using LBM is discussed in this paper,
and a new moving boundary treatment is proposed to reduce the
unexpected fluctuations and to improve the stablity in the simula-
tion of flow around moving boundary. Simulations for a cylinder in
still water and in flow water are processed and show good agree-
ments with theory and experiment, which verifies the reliablity
of the new moving boundary treatment. The compressible effect
in fluid-structure interaction using LBM is also discussed. Simula-
tions of cylinder array in this paper reveal that compressible effect
and moving boundary force term has a significant influence on the
numerical accuracy for multi-structure interaction case, and Ma
should be carefully chosen for a reliable result.



Fig. 19. vector of velocity for Ma = 0.05 and 0.0025 at different time. (a) Ma = 0.05 t/T = 0.005, (b) Ma = 0.0025 t/T = 0.005, (c) Ma = 0.05 t/T = 0.05, (d) Ma = 0.0025 t/T = 0.05,
(e) Ma = 0.05 t/T = 0.25, (f) Ma = 0.0025 t/T = 0.25, (g) Ma = 0.05 t/T = 0.5, (h) Ma = 0.0025 t/T = 0.5.
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